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CHAPTER 1

INTRODUCTION

The scattering of elastic waves by an inhomogeneity embedded in an
infinite homogeneous isotropic elastic medium has been studied by
numerous investigators. An '"inhomogeneity' is a region in which dif-
ferent material properties from its surrounding medium exist. Eshelby
[1,2] developed the method of equivalent inclusion to determine the
elastic field of an ellipsoidal inclusion. An "inclusion' is considered
to be a region which has the same geometric shape and dimension as the
inhomogeneity but the same material properties as its surrounding medium
after an eigenstrain is imposed within that region. Mal and Knopoff
[3] appeared to be the first in applying Eshelby's result to form the
scattering theory of a single sphere. Subsequently, Gubernatis [4]
also used Eshelby's result to study the long-wave scattering of elastic
waves for an ellipsoidal inhomogeneity. In the above studies Eshelby's
solution for the static displacements was used as the first approxima-
tion in the iteration.

Wheeler and Mura [5] first applied the concept of eigenstrain to
study composite materials, in which they considered the difference in
elastic moduli between the inhomogeneity and matrix. Subsequently,

Fu [6] presented a formulation for the elastodynamics field of two
ellipsoidal inhomogeneities embedded in an infinite elastic medium sub-
jected to plane time-harmonic waves. He [7] later gave a complete

formulation in extending the method of equivalent inclusion to dynamic



elasticity and gave some results for three-layered and five-layered
media subjected to plane time-harmonic longitudinal waves. The scat-
tering of plane waves by an ellipsoidal inhomogeneity is presented in
(8,9].

The scattering of a plane compressional wave by a spherical inhomo-
geneity in an infinite elastic medium has been studied by Ying and
Truell [10] and by Pao and Mow [11]. They used the method of separation
of variables to solve the wave equation which describes the incident,
reflected (scattered) and refracted waves inside and outside the spheri-
cal inhomogeneity. Because the solutions are expressed by a spherical
coordinate and the inside and outside scattering field can match exactly
along the boundary of the spherical inhomogeneity, the results by this
method are considered as exact solutions. Some numerical results of
the elastic scattering cross section were shown by Johnson and Truell
[12], and some dynamical stress concentration factors around a spheri-
cal cavity were found by Pao and Mow [14].

This research is concerned with numerical calculations according
to the extended method of equivalent inclusion by Fu [6-9], and a com-
parison with the exact solutions. Two cases are studied here. The
first case is concerned with the three-layered problem and the other
case is concerned with the spherical inhomogeneity problem. Results
by the direct integration method for the three-layered problem and the
method of separation of variables for the spherical inhomogeneity
problem are compared with those obtained by the extended method of

equivalent inclusion applied on the two cases.



CHAPTER 2

WAVE MOTION IN AN ELASTIC MEDIUM

2.1. Governing Equation

Consider the infinitesimal element of an elastic body with mass

density p in the absence of body forces, the equations of motion are

Usk,k = ° Uj (1

where a dot indicates a differentiation with respect to time while a
subscript comma indicates spatial differentiation.

If the elastic material is linear and homogeneous, the stress-
strain relation is

(2)

95x = Csxrstrs

where C. are the elastic constant.
jkrs

If the elastic material is isotropic, then the independent elastic

constants are reduced to two and

Cjkrs = A ij 6rs * u(sjr °ks ¥ st Skr) (3)

where A,up are Lame's constants and sjk are kronecker's delta.

Substituting eqs. (2.1.2)(2.1.3) into eqs. (2.1.1) the equations

of motion in terms of the displacements are obtained as follows:

(A+u) Uj,ji + U Ui,jj =90 U (4)

or, in vector notation as:

(A+p) vV - g + uvzﬁ = p ﬁ (5)



where V is the vector differential operator.

The displacement vector T can be decomposed as

U:le+vx$,v'$=0. (6)

>
where the Y and ¢ are the scalar and vector displacement potentials,

respectively.

A substitution of eqs. (2.1.6) into eqs. (2.1.5) leads to
) 2 - 2> >
V2wV - o w] + 7 x[u V59 - p ¢] =0 (7

and the ¢ and $ satisfy the wave equations

vy =Ly 8)
L

L3 (9
Vr

in which VE = (A+2u)/p and v% = u/p are the velocities of longitudinal

waves and shear waves, respectively.

2.2, Initial and Boundary Conditions

In the above section the general wave equations in the absence of
body forces have been mentioned without considering external forces.
Usually the external force can be treated as an internal or surface
source (incident wave), or in the form of initial conditions (impulses)
and boundary conditions (displacement or force or mixed boundary condi-
tions). Here the external force from sources, i.e. incident waves, will
be discussed.

If the incident waves are assumed to be plane waves, in general

they are composed of compressional and shear waves. When the incident



waves move in an elastic medium, the compressional and shear waves will
propagate independently. But they can not travel independently if there
is an inhomogeneity in the elastic medium. When the incident waves im-
pinge on the inhomogeneity, compressional and shear waves will be re-
flected back into the matrix while the same types of waves will be re-
fracted into the inhomogeneity. Both the reflected and refracted waves

must satisfy the general wave equations. If the elastic inhomogeneity

is bounded to the matrix at all times, then the tractions and displace-
ments must be continuous at the interface between the inhomogeneity and

matrix.

2.3, Time-harmonic Wave Problem

If the incident waves are time-harmonic, then the reflected and re-
fracted waves will also be time-harmonic waves of the same angular fre-
quency. Therefore, the displacement of all the waves can be represented
by

UE,t) = U(D) exp(-iwt)s, (1)
where w is the angular frequency and gﬁ is the unit vector in the direc-

tion of wave propagation.

The scalar and vector displacement potentials are

$(T,t) = ¢(T) exp(-iwt) (2)

3F, 1)

$(T) exp(-imt)g¢ (3)

>, . . . .
where e is the unit vector in the direction of shear wave.

%
Substituting eqs. (2.3.2)(2.3.3) into eqs. (2.1.8)(2.1.9), the



wave equations are reduced to

(4)

1]
o

w2 + o%) $(@

(5)

]
(]

2 2 >
(V7 +87) (1)
where a=w/vL, 8=w/vT are the wavenumber of longitudinal and shear waves,

respectively.



CHAPTER 3

INHOMOGENEITY PROBLEMS

3.1. Transmission and reflection of waves in an infinite three-layered
medium

A plane compressional incident wave which is simple harmonic is
assumed to propagate in a three-layered medium. The geometry and ma-
terial properties of the medium are shown in Fig. 1. The displacement
of the incident wave is

) -y expik-r - iwt)d )

z o -= z
where U° is the amplitude and k, w are wavenumber and angular frequency,
respectively. 3; is the unit vector in the positive direction of z-axis,

i.e. plane wave propagation.

3.1.1. Integration of the governing differential equation

When the plane compressional incident wave impinges on the inter-
face between the elastic inhomogeneity (medium II)} and its surrounding
medium (medium I), a compressional wave is reflected back into the
medium I, while a compressional wave is transmitted into region III[13].
For convenience of the ensuing discussion, the displacements and stresses
associated with the incident, reflected, refracted and transmitted waves
will be designated by the superscript (i), (r), (f) and (t). Details
for incident compressional plane waves along the +z axis are given below.
The displacement of these waves are

ult) = u_ exp(iaz - iwt) (1)

U = Aexp(-daz - iwt) )



ul) < B exp(iagz - iut) (3)

Ugf) = U(f)(z) exp (-iwt) (4)

where U, A, B are the amplitude of the incident, reflected and trans-
mitted waves, respectively. alz = mz/vi = Olwz/(ll+2u1), where the sub-
script 1 denotes the matrix.

The displacement function U(f}(z) should satisfy the wave equation

(@ + @,P)u(z) = 0 (5)

2
where 2 2/v2 = fgf————— and the subscript 2 refers to the inhomo
Te a, = w /vy = (k2+2u2) P -
geneity.

For the simple case chosen, U(f)(z) are obtained as

z + Dsina,z (6)

U(f)(z) = Ccosa2 5

where C, D are constants.

The stresses associated with the above displacements are

(1) s v (4 .
0, = iag(A;*2uy) U expliagz - iwt) (7
(r) _ ~ig, (A, +2u.) A exp(-ia,z - iwt) (8)
922 RS Bl | P 1
o8 = ia (i #2u.) B explia z - iwt) (9
2z 1V4174H piieg
£) | (A,+2u,) (-Csina,z + Dcosa,z) | (10)
92z T %2M27H2 “2 2

The stresses and displacements must be continuous at the inter-

face. Thus at z = - §/2 the continuity conditions are
U(l)+ ) U(f) (11)
z z A
ED RN C) BN € (12)

2z YA 22



and at z = §/2 the continuity conditions are

(t) _ ;D)
Uz = UZ (13)
o - off

These continuity conditions give four simultaneous equations in
terms of four unknown coefficients A, B, C and D. After solving the

simultaneous equations, the unknowns A, B, C, D are found to be:

azd a26
COS—— sin—f—
= <] - - 1
A erxp( 1a16)[1 a26 a26 a,0 azé : (15)
cos—f— -ivfh sin—f— sin > +iv/fh cos——
cosizi sina26
. 2 2
B=U jexp (-i2;8) [—4— 58 T TTas a25] (16)
cos—— -i/fR sin—5—  sin—— +i/FR cos——
a26 a26
C=U_exp(-ia;8/2) / (cos—>— - iv/fh sin—-) 7
a26 azé
D=-erxp(-ia16/2) / (sin = * ivfh cosTTJ (18)

where f = (k2+2u2)/(ll+2ul) and h = pz/pl

The displacements and stresses in the whole medium can be obtained

by using equations (1-4) and equations (7-10), respectively.

3.1.2. Extended Method of Equivalent Inclusion

The equations of motion for the inhomogeneity and the matrix are:

U ~ matrix ' (1

Kk T L

%k = P2 ﬁj inhomogeneity (2)

2



10

The stress-strain relations are:

- o) :
-ojk = Cjkrs €g matrix (3)
o., = ¢ inhomogeneit (4)
jk jkrs “rs 7

N (2) . :
where P15 Cjkrs and P Cjkrs are mass density and the elastic constants
for the matrix and the inhomogeneity, respectively.

Replacing the inhomogeneity with an equivalent inclusion which has

the same material properties as the surrounding matrix after an eigen-

strain is imposed in the inclusion, the governing equations are equations

(1,3) and
ojk,k =0 Gj inclusion (5)
ch C§iis s:s inclusion (6)
s;s = Ers T S;s (7
where ¢ el e* are the total strain, elastic strain and eigen-

rs’ rs’ rs

strain, respectively,

The equivalence conditions derived and given in [7,9] are:

chkrs eig) + C§iis ezgl) = - ACjkrs eiz) inside the inclusion (8)
Ap G§m) + C§iis g:éfi) = - Ap 5§a) inside the inclusion (9)
where ACJ.krs = C§iis - C§ils > Bp = py - fq and

Clids S5,k = Ciids 1ok * Crkts ok 1)

u, =y, @,y @ (11)
i3 j
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where the superscripts 'm'" and "a' denote field that is induced by the

presence of mis-match and that is applied.

Equations (3.1.2.5-3.1.2.11) are the general equations for the

equivalent inclusion with no restrictions on the geometric shape of the

inclusion, i.e. these equations can be applied to an inclusion of arbi-

trary geometry.

For the three-layered problem, the equivalence conditions are re-

duced to
1 2 7 (1 N _ 2
IT Lew Zo lon[01a, + ¢ "7 [0]B ] + (A, + 2u)A ) = -8ow’H
1 2 T (2) 2
T Aew ) [¢n [O]An + ¢n [O]Bn] + (kl + 2u1)A1 = -0pw'Hy
n=o0
m
%T sow? ) [¢§m)[0]An * ¢§m+1)[015n] + (g + 2uA] = -AmeHm
n=o
and
m
Sr(arv2an) ngo [0$1) (01A +¢ (P (0181 + (A)+2u)B = -(are20W)E
m
Lanezam) ] (642 (014 (P [01B 1 + (A +20)B = -(are28m)E
=0

m
%T(AA+2Au) ) [¢£m+l)[O]Ah+¢§m+2)[0]3n} ¢ (Ap*2u)B = -(MM+200)E

n=o

(12)

(13)



-y
N

ial _%
2
k) d
¢n (z) = E;F ¢n(z)
AY = )
~n 1\2 I\l

Ciozl)“_l

Hm = m! Uo
(ial)m”l

E = U

m m! o

The eqs. (3.1.2.12) and (3.1.2.13) give 2(m+1) simultaneous equa-

tions, having matrix dimensions of 2(m+l1) x 2(m+1) if matrix represen-

tation is used.

The displacement and strain fields inside and outside the equiva-

lent inclusion are:
Uz(z,t) = UzCz) exp (-iwt)

m .
U,(2) = [ [A0n(2) + Bop(2)] + Uet®tf

azz(z,t) = azz(z) exp(-iwt)
- T ' n . ialz
e, (2) = ) [A 8! (2) + B 90 (2)] + ia U e

n=o0

and the stress fields are:
ozz(z,t) = czz(z) exp(-iwt)

c..(z) = (kl + 2u1) €

i
2z (z) | matrix

2z

o__(z) (z) inclusion

zz (XZ * 2“2) €

2z

(14}

(1s)

(16)

(17)

(18)

(19)

(20)
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Evaluation and integration of the ¢n-integrals are shown in

Appendix I.

3.2. Scattering of waves by a §pherical inhomogeneity

A plane compressional incident wave which is simple harmonic is
assumed to move in the positive z-axis in an infinite elastic medium
where an elastic spheriEal inhomogeneity is embedded. The configuration
of the whole domain is shown in Fig. 2. The displacement of the inci-
dent wave is

Ezm = U exp(ioz - iwt)e, (1)

where U° is the amplitude and @, w are the compressional wavenumber
and angular frequency, respectively, and gz is the unit vector in the
positive direction of the z-axis.

In this section two methods, the separation of variables ap-
proaches and the extended equivalent inclusion method, are used to
determine the displacements and stresses of the reflected (scattered)
waves. Then, two measurable physical quantities, differential scat-
tering cross section and the total scattering cross section far from
the inhomogeneity, will be expressed in terms of the scattered asymp-
totic values. The differential scattering cross section dP(w)/dQ [4]
is a measure of the frastion of incident power scattered into a parti-
cular direction, where d is the differential element of solid angle.
The total scattering cross section P{w)} is the ratio of the average
power flux scattered into all directions to the average intensity of

the incident fields.
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3.2.1. Method of separation of variables

In this section, the work by Ying and Truell [10] and that by
Pao and Mow [11] will be briefly introduced.

When a plane compressional incident wave impinges on the surface
of the elastic inhomogeneity, scattering occurs. Both compressional
and shear waves are reflected back into the matrix (Medium I) while
the same types of waves are refracted into the inhomogeneity (Medium II).
The potentials, displacements and stresses associated with the incident,
reflected and refracted waves are denoted by the superscript (i), (r)

and (f). The wave equations in terms of potentials are

(Vz * alz) w(i) =0 :
(1
(Vz + 812) ¢(i) =0
w? + a2 ) =0
(2)
(@% + 8,5 o =0
(@ + 0, 4B =0
(3)
@+ 8,5 ¢ =0
where alz = plwz/(xl+2ul) s 812 = plmz/ul , azz = pzwz/(kz+2u2),
822 = Dzwz/uz .

The displacement of the incident wave is

Ugi) = U, exp(ia;z - iwt) (4)
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and the associated potential functions are

. 4]
v - g2 exp o) (5)
$@) < o (6)
¢(i) can further be represented in terms of a spherical coordinate
function
(1) Uo T i NN
pr) o= 3 n§0(2n+1)1 jpleqr) P (cose) 7N

where jn(x) are the spherical Bessel functions of the first kind, and
Pn(x) are Legendre polynomials.

Because of axisymmetry of this problem, displacements, stresses
and potential functions are independent of the spherical coordinate ¢.
Therefore, after solving the wave equations, the potentials of the re-

flected wave are [12]:

¢(r) = 7 (-i)n+l a(2n+1)A_ h_(o;7)P_(cos®) (8)
n=o

8T o 7 (™! a(2n+1)B_ h_(8,1)P_(coss) (9
n=o

where hn(x) are the spherical Hankel functions of the first kind.
For the refracted wave inside the inhomogeneity the potentials are

[12]:
(£

nzo(-i)n+l a(2n+l)ann(a2r)Pn(cose) (10)

L]

¢(f) = ¥ (_i)n+1 a(2n+l)Dnjn(62r)Pn(cose) (11)
n=o
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The resultant waves in the medium I and medium II are

b = w ey (12)
6, = o) 4+ 0P (13)
v, = (8 (14)
NG (15)

The general representation of displacements and stresses in terms

of the potential functions ¢, ¢ can be found in [15]:

=9y .1
Ur =3 T ;(De‘ﬂ (16)
1 3y 9
Ug = T35 - 35(0:%) 7
o=l By 23 1 p, . Ly & (18)
T H > T ar 2 8 r 6%9r T
82-262 1 3¢y 1 cotf 3y
Ogg = 20[- —Z VrTar T 30V - =37 (19
coté 9 1 3¢
T 35 r%) Do)
o3 23y 2 2y, 230, 2, .2
°re = Mpglrar - 2 VT B Tar t T3t 7 Dt (20)
T T T
2 2 Dyo
8 -2a 1 3y . cotb Eﬁb_ + 9 cotb 3 D ¢] (21)

0pp = M- Tm Vvt Ty 2 38 "2 71 % r

3

9 1 9
5T 39)

1 . . .
where D_ = 37 5= SInE 38 For the incident field,

{sind

®
3
(a9
(e
1

B=8.. For the reflected field, ¢ = (%) 4.0(T)

, ¢$=0, a=a 1

l’

a=ay, B=8; - For the refracted field, ¢=¢(f), ¢=¢(f), a=a,, B=8, .
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Consider the boundary conditions at r=a

Uﬁi) + Uir) = Uif) (22)
ugi) . Uér) - Ugf) (23)
oD o o) off e
DD

Substituting eqs. (7-11) and eqs. (16-21) into the above continuity
equations will form four simultaneous equations. After solving these

C Dn will be obtained. Thus, the

equations, the unknowns An, Bn, n’

elastic field inside and outside the inhomogeneity can be determined.

The total scattering cross section far from the inhomogeneity is

[12]:
@® a
P(w) = 4Tra2 Z (2n+1)[[Anl2 + n(n+1) El ]Bnlzj (26)
n=o 1

and P(w) can be normalized as

P(w) = 4 E (2n+1) [|A |2 + n(n+1) 21 |B [2] (27)
n=o n B1 n

3.2.2. Extended Method of Equivalent Inclusion

The eqs.(3.1.2.1 - 3.1.2.11) are general equations by this method
and can be applied to the inhomogeneity problem of arbitrary geometry

[7-9]. The equivalence conditions are recorded here as follows:

1 2 : -
T Aew [fsj[O]Aj + fsjk[O]Ajk+...+Fskj[0]Bkj + Fskjl[o]Bkjl+"']

- 2 1
+Ag = - BowH (1)
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1

2
1T dew [fsj,p[O]Aj + fsjk,p[O]Ajk+'"+Fskj,p[o]Bkj + Fskjl,p[o]Bka+"']
sA__ = -BpwH (2)
Sp sp
1
T Akﬁst[dmmj[O]Aj + dmmjk[o]Ajk+"'+Dmmjk[O]Bjk+Dmmijk[O]Bijk+‘"]
1
* 5T 2Au[dstj[0]Aj + dstjk[O]Ajk+"'+Dstjk[O]Bjk+Dstjki[O]Bjki+'"]
+ (A8, B +2u B ) = -(AAS (B + 2ALE_,) (3)
1
T 00 gq [y H101A+d i TOA e wDp oy (01D s oy 018y v ]
1
+ TTQAu[dstj,p[o]Aj+dstjk,p[0]Ajk+"'+Dstjk,p[0]8jk+Dstjki,p[O]Bjki+'"
+ (Alssthmp+2ulBstp) = -(AkdstEmmp + 2AuEstP) (4)

0 otherwise

ial s=3 p=3

sp o
=0 otherwise
E = ial m=3 n=3
mn o
=0 otherwise
- 2 = - -
Emnp = -an m=3 n=3 p=3

=0 otherwise
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2
4o w fjs[?] = -[812¢5js + o= ¢ L]

»Js »3s
2 > 2
dmp wE, (7] = - (870855 * Yy 55 T %, 5]

2 2
S[Aa T Sy 20810 485

2 >
4wplm Fskj[r]

-2V g5 * 288 ksl

skis

2 - 2 2
4y F s o [F] = =[085 + 2M1B1 g x%s;

- 2ug¥y sk * 2%, kjs]

2 -+ 2
4mow dmnj[r] =- B8 [¢,n5jm * ¢,m6jn * ¢,jmn - ¢,jmn]

2 > 2
amojwdy i [T1 = - B 708 185m * mdin * ¥k, jan T %k, jmn)
41019 Do 3] = 20 [0 b Lo 1w B 200 . & +¢ 6 ]

J ¥ x5mn-?, kjmn? 171 1%, 50 " ?,mj “kn
2
= 2% S5k

2 > 2
amo 0D s B = 20y Uy s5mn = 55mn) 4181 Uk, 1n%5m* ¥, mi %5in

2
= 2191 ¥, mn’j

where the ¢- and y-integrals and their derivatives are evaluated for a
sphere by using the method given in [8] and are listed in Appendix II.

From Appendix II, fsjk[O]’ stk[O], fsj,p[O]’ Fska,p[o], dstj[O]’

[ol, 4 {0] and D [0] are equal to zero. Then eqgs.

Dstjki
(3.2.2.1 - 3.2.2.4) can therefore be much simplified.

stjk,p stjk,p

If one assumes a two term expansion in the eigenstrains, then
eqs. (3.2.2.1) and eqs. (3.2.2.4) will form 21 simultaneous equations

while eqs. (3.2.2.2) and eqs. (3.2.2.3) will form another 15 simultaneous
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equations. The two sets of simultaneous equations are uncoupled.

Solving the two set simultaneous equations for Aj, Ajk’ Bjk and

Bjkg’ the displacements of the scattered wave can be written as ([8,9]
7 Z oA+ F
Up(Tt) = [E585 + Frafap * FopjoBuje ™ ka; By ;lexp(-iut) (5
here: amowl = - 8,286 + 8 -3
where nplw nj = - Bl ] mj + w,mj - ¢,mj
22 2> >
4mp)w fmjl = - Bp 98 mj wz ,mj ¢z,mj
2> _ 2> 2>
amoqw Fras = -7V pby * 24981 ¢ iy
> 2 >
- 2u9¥ gy 20 gy ]
4o, w’F Ay 2p, & 25 s
™10 Frge = "% Yenbks * 1P %2,k%nj
> >
- 2u9¥g miy * 2190, mis)
where: exp(ia,R)
i[?] = [[f ————ﬁ—l—— dav? T outside @
exp(la R)
> > .
v (T = fff X, —g—— v T outside @
> exp(ialR) -
i = ——— ' i
Vi .. [r] fff XX l...x; = dv r outside Q
> > 3 -
¥ [F] = S vl
k
> > 3 >
b [r] = sor—— vIT]
Skt ...s axkaxl...axs
exp (iB,R)
;[?] = [[] Rl dv? T outside @

exp(iBlR)

$k{?] = fffﬂ Xp — R av’ T outside @



exp(i8,R)

$k£ s[;] = [[f XpXpoe Xg ————ﬁ—l—— dv! T outside @

ven Q

]
¢ [F1 = Lo ¢ [F]
2 > 3 > -
¢ [r] = 07— ¢[1]
,KL-..58 3xk3x1"' xs

As l;[ -+ » the far field value of U, can be expressed as [9]:

expioT expiBlr
ugu = ——+D ————
m m T m r

and the associated far field stress are

expialr
Opn = 1M —37 Gk

Son
expialr

* il'll[ml r (Cmgn * anm)

expiBlr
* B1 T (szn * Dnlm)]

where lk are direction cosines.

The differential scattering cross section is therefore [9]

2 2
@ _ |‘al |, %1)’n
[e19) Uo Bl Uo

and the total scattering cross section is

P = [ Elal 4g

and P(w) can be normalized as
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(6)

(7

(8)

)

(10)

Some important volume integral calculations are shown in Appendix II.
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CHAPTER 4

COMPARISON OF COMPUTATIONAL RESULTS

In this chapter numerical results are presented and compared for
the three-layered and spherical inhomogeneity problems. Numerical
results were made known by Truell and his co-workers for a perfect
spherical inhomogeneity. In order to compare with these results, the

same material properties are used and listed in Table 1.

Table 1. Material Properties

Compressional shear wave

Material wave velocity velocity Mass density
(m/s) /sy (g/emd)
Stainless Steel 5790 3100 7.90
Mg 5770 3050 1.74
Al 6568 3149 2.70
Ge 5285 3376 5.36
Polyethylene 1950 540 0.90
Be 12890 8880 1.87

When the extended equivalent inclusion method is used, there are
complex matrices, with dimensions depending upon the dimensionless
wavenumber and the differences in elastic constant and mass density
between the inhomogeneity and the matrix, need to be solved. In some
cases, the dimension of the matrix are so large that the numerical
error can be relatively high. In order to get the best results, the
IMSL (International Mathematical and Statistical Libraries) subroutine
LEQ2C is used to solve matrices with double precision. The routine

applies iterative improvement until the solution is accurate to machine
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precision. If the matrix is too ill-conditioned to get effective itera-

tive improvement, a terminal error is produced.

4.1. Three-Layered Medium Problem

The input parameters for both methods are the dimensionless wave-
number alé, the relative ratio of elastic constants f and mass density
h, where f is (A2+2u2)/(x1+2u1) and h is pz/pl. The displacement ampli-
tude U° and the stress amplitude (k1+2u1)a1U° given in the preceding
figures are nondimensionalized.

The calculation of the exact solutions is simple and the dimension
of the matrix is just 4x4. The calculation of the equivalent inclusion
method is relatively complicated. The solution is an infinite series
summation, and Nf(the accepted number of terms to get convergent results)
depends on @;8, £ and h. In the calculation of the displacements and
stresses from Eqs. (3.1.2.14 - 3.1.2.20), the summation is considered
to be acceptable until the ratio of the current term to the current
partial term is less than 0.5%.

In order to make detailed comparison, three cases are studied
here. The first case considers the difference in elastic constants,
i.e. f#1 and h=1. Fig. 3-7 and Fig. 8-12 display the displacement
amplitude and stress amplitude vs .8, respectively. The second case
considers the difference in mass density, i.e. f=1 and h#l. Fig. 13-17
and Fig. 18-22 display the displacement amplitude and stress amplitude
vs uld. The last case considers the difference both in elastic
constants and mass density. Fig. 23-27 and Fig. 28-32 display the
displacement amplitude and stress amplitude vs a;8. From the results,

it is found that the extended method of equivalent inclusion gives



excellent results which can be treated as the exact solutions. The
values of Nf in getting the convergent displacement and stress ampli-

tude in the third case are listed in Table 2.

Table 2. The Value of Nf for the Thfee-Layered Problem

Ge in A1 Al in Ge Polyethylene in Be Mg in St St in Mg

a16 £=1.285 £=0.778 £=90.790 £=0.219 £=4.572
h=1.985 h=0.504 h=2.078 h=0.220 h=4.540
0.5 6 4 6 6 6
1.0 6 6 6 6 8
2.0 8 6 6 8 8
4.0 12 8 8 10 12
6.0 ° 16 10 8 14 14
8.0 18 14 8 16 18
10.0 22 16 10 20 20

4.2. Spherical Inhomogeneity Problem

The input parameters are the dimensionless wave number ®. 25 the com-
pressional and shear wave velocity and the mass density of the inhomo-
geneity and the matrix.

For the method of separation of variables, the results of the scat-
tering cross section were plotted in Truell's paper but the specific
values for different a;a are not listed.+

For the equivalent inclusion method, there are two independent
series summation. The first one is to get the inside function value
in the eqs. (3.2.2.1 - 3.2.2.4), which are related to @2 and Bl/a1
only. The second one is to get the outside function value in the eqs.
(3.2.2.5 - 3.2.2.10), which also depends on a,a and Bl/al.

From the three-layered problem, it is known that the value of Nf

+The data shown in this section are calculated from the computer program
kindly supplied by Dr. J. Gubernatis.
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depends on a.8, £ and h. This is also true for the current problem.
Besides, it is found that the value of Ng also depends on Bl/al. It
should be noted that the dimension of the matrix is proportional to the
value of Nf. Therefore, for large Nf, the dimension of the matrix will
. be very large and the derivation and numerical computation to get the
scattering cross section is very lengthy gnd time-consuming. Instead
of finding the scattering cross section for large @, a, it is hoped to

find the accepted value in what range of «,a when Nf=1. Later, the

1

result is called one-term solution when Ne is equal to 1. The egs.

(3.2.2.1 - 3.2.2.4) are reduced to:

pow?[£_.[0]A. + F_,.[0]B,.] + A. = -ApwH (1)
sj b skj kj s S

AAést[dmmJ.[O]Aj + Dmmjk[O]Bjk] + 2Au[dstj[0]Aj + Dstjk[o]Bjk]

+ (AIG Bom * 2u135t) = -(AAGS Em ¥ 2AuEst) (2)

st t

From the formulas in Appendix II, it is found that Fskj[O] and
dstj[o] are equal to zero, which make the eqs. (4.2.2.1) and (4.2.2.2)
uncoupled, i.e. the difference in mass density and the difference in
elastic constants will have no coupled effects. After some manipula-
tion, it is found that the nonzero variables are A3, Bll’ B22 and B33
with B11 equal to B22 by symmetry. For low o, a, the closed form
solutions of these variables can be obtained and the closed form of the
scattering cross section can also be obtained.

Fig. 33-36 display the scattering cross section vs a,a from two

method. It is found if «.a is less than 1, the tendency of the one

1

term solution is good compared to the exact solution. For certain
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material system the one-term solution represents a good approximation
up to medium frequency range. The accuracy, however, is not good
enough to produce relative errors less than 1% though a,a goes down to
0.01. The Fig. 37-40 display the comparison for the a2 between 0.01
and 0.1. It is therefore necessary to take more terms in the series

for higher oja if this approach is to be used.
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CHAPTER 5

DISCUSSION AND CONCLUSION

It is worth studying the numerical characteristics of the ex-
tended method of equivalent inclusion. By doing this, we will know
what kind of inclusion this method.can be applied to. Because of the
simplicity and low computer time, the three-layered problem is chosen
first for studying. Fig. 41-50 display the displacement and stress
amplitude vs aié, f and h, respectively. In these figures, the curves
both for N(number of terms) = 6,12 and for the exact solution are
shown. From these figures, it is found Nf will increase while a16
or h increases or f decreases. Besides, the value of Nf for convergent
stress amplitude is larger than the value for convergent displacement
amplitude. It is also found that the displacement amplitude is less
than the exact solution and the stress amplitude is larger than the
exact solution at the larger ald if N is less than Nf.

Though the acceptable numerical results of the equivalent inclusion
method in spherical inhomogeneity are not obtained in this study, the
one-term solution supplies a very good tendency at low wavenumber. It
is expected when the two-term solution (N=2) are applied, the accuracy
at low dimensionless wavenumber will be very good and it will also
supply good tendency in higher dimensionless wavenumber. And if Ne
is large enough for different inclusion, the value from this method

should be very close to the exact solution as in the three-layered

problem.
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From the above study, it is found Nf will be large as the ald
(or ala) or h or Bl/a1 is very large or f is very small. Therefore,
the dimension of the complex matrices will also be very large, which
will brobably cause the numerical singularity (algorthmic singularity)
in high @,a Tange. The numerical singularity may be overcome after
some numerical improvement skills are applied or other numerical methods
are used. It is suggested that numerical scheme be carefully studied

for large h, Bl/a1 or small f at high wavenumber range.



APPENDIX I
EVALUATION OF SOME INTEGRALS FOR THE THREE-LAYERED PROBLEM
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EVALUATION OF SOME VOLUME INTEGRALS FOR
THE SPHERICAL INHOMOGENEITY PROBLEM

From Ref.[6,8], we obtain:
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In what follows we develop these formula specially for a sphere of

radius a:

II.3. C(n),m and s(n),mv for p(?) = 1 and Q is sphere
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Fig. 11
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